KalmanFilter Class Reference

#include <MemoryX/libraries/helpers/EarlyVisionHelpers/KalmanFilter.h>

+ Inheritance diagram for KalmanFilter:

Public Member Functions

Gaussian filter (const Gaussian &believe, const Eigen::VectorXd &actionU, const Eigen::VectorXd &perceptZ)
 
EIGEN_MAKE_ALIGNED_OPERATOR_NEW KalmanFilter ()
 
Gaussian predict (const Gaussian &believe, const Eigen::VectorXd &actionU)
 
void setMeasurementModel (const Eigen::MatrixXd &measurement_C, const Gaussian &measurement_noise)
 
void setMotionModel (const Eigen::MatrixXd &motion_A, const Eigen::MatrixXd &motion_B, const Gaussian &motion_noise)
 
Gaussian update (const Gaussian &predicted_believe, const Eigen::VectorXd &perceptZ)
 

Public Attributes

Eigen::MatrixXd m_A
 
Eigen::MatrixXd m_A_t
 
Eigen::MatrixXd m_B
 
Eigen::MatrixXd m_C
 
Eigen::MatrixXd m_C_t
 
Gaussian m_Q
 
Gaussian m_R
 

Detailed Description

Definition at line 27 of file KalmanFilter.h.

Constructor & Destructor Documentation

◆ KalmanFilter()

EIGEN_MAKE_ALIGNED_OPERATOR_NEW KalmanFilter ( )
inline

Definition at line 33 of file KalmanFilter.h.

Member Function Documentation

◆ filter()

Gaussian filter ( const Gaussian believe,
const Eigen::VectorXd &  actionU,
const Eigen::VectorXd &  perceptZ 
)

Definition at line 41 of file KalmanFilter.cpp.

+ Here is the call graph for this function:

◆ predict()

Gaussian predict ( const Gaussian believe,
const Eigen::VectorXd &  actionU 
)

Definition at line 52 of file KalmanFilter.cpp.

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ setMeasurementModel()

void setMeasurementModel ( const Eigen::MatrixXd &  measurement_C,
const Gaussian measurement_noise 
)
Parameters
measurement_Ctransformation from state space to observation space
measurement_noisegaussian encoding the observation noise

Definition at line 29 of file KalmanFilter.cpp.

+ Here is the caller graph for this function:

◆ setMotionModel()

void setMotionModel ( const Eigen::MatrixXd &  motion_A,
const Eigen::MatrixXd &  motion_B,
const Gaussian motion_noise 
)
Parameters
motion_Anxn square matrix being the linear transformation of the state
motion_Bnxm matrix being the transformation from control to state
motion_noisen dimensional gaussian being the motion noise

Definition at line 19 of file KalmanFilter.cpp.

+ Here is the caller graph for this function:

◆ update()

Gaussian update ( const Gaussian predicted_believe,
const Eigen::VectorXd &  perceptZ 
)

Definition at line 63 of file KalmanFilter.cpp.

+ Here is the call graph for this function:
+ Here is the caller graph for this function:

Member Data Documentation

◆ m_A

Eigen::MatrixXd m_A

Definition at line 56 of file KalmanFilter.h.

◆ m_A_t

Eigen::MatrixXd m_A_t

Definition at line 59 of file KalmanFilter.h.

◆ m_B

Eigen::MatrixXd m_B

Definition at line 57 of file KalmanFilter.h.

◆ m_C

Eigen::MatrixXd m_C

Definition at line 58 of file KalmanFilter.h.

◆ m_C_t

Eigen::MatrixXd m_C_t

Definition at line 60 of file KalmanFilter.h.

◆ m_Q

Gaussian m_Q

Definition at line 63 of file KalmanFilter.h.

◆ m_R

Gaussian m_R

Definition at line 64 of file KalmanFilter.h.


The documentation for this class was generated from the following files: