edge_weight_computer_terms.h
Go to the documentation of this file.
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2014-, Open Perception, Inc.
6  *
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * * Redistributions of source code must retain the above copyright
14  * notice, this list of conditions and the following disclaimer.
15  * * Redistributions in binary form must reproduce the above
16  * copyright notice, this list of conditions and the following
17  * disclaimer in the documentation and/or other materials provided
18  * with the distribution.
19  * * Neither the name of the copyright holder(s) nor the names of its
20  * contributors may be used to endorse or promote products derived
21  * from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  *
36  */
37 
38 #ifndef PCL_GRAPH_EDGE_WEIGHT_COMPUTER_TERMS_H
39 #define PCL_GRAPH_EDGE_WEIGHT_COMPUTER_TERMS_H
40 
41 #include <pcl/point_types.h>
42 
44 {
45 
46  /** Squared Euclidean distance between points.
47  *
48  * \f[
49  * d_{xyz}(v_i,v_j) = ||p_i-p_j||^2
50  * \f]
51  *
52  * Requires that the point type has *x*, *y*, and *z* fields.
53  *
54  * \ingroup graph
55  * \author Sergey Alexandrov
56  */
57  struct XYZ
58  {
59  typedef pcl::traits::has_xyz<boost::mpl::_1> is_compatible;
60 
61  template <typename PointT> float
62  static compute(const PointT& p1, const PointT& p2)
63  {
64  return (p2.getVector3fMap() - p1.getVector3fMap()).squaredNorm();
65  }
66  };
67 
68  /** Angular distance between normals.
69  *
70  * \f[
71  * d_{normal}(v_i,v_j) = \frac{||n_i-n_j||^2}{2}
72  * \f]
73  *
74  * Requires that the point type has *normal_x*, *normal_y*, and
75  * *normal_z* fields.
76  *
77  * \ingroup graph
78  * \author Sergey Alexandrov
79  */
80  struct Normal
81  {
82  typedef pcl::traits::has_normal<boost::mpl::_1> is_compatible;
83 
84  template <typename PointT> float
85  static compute(const PointT& p1, const PointT& p2)
86  {
87  return (0.5 * (p1.getNormalVector3fMap() - p2.getNormalVector3fMap()).squaredNorm());
88  }
89  };
90 
91  /** Product of curvatures.
92  *
93  * \f[
94  * d_{curvature}(v_i,v_j) = c_i \cdot c_j
95  * \f]
96  *
97  * Requires that the point type has *curvature* field.
98  *
99  * \ingroup graph
100  * \author Sergey Alexandrov
101  */
102  struct Curvature
103  {
104  typedef pcl::traits::has_curvature<boost::mpl::_1> is_compatible;
105 
106  template <typename PointT> float
107  static compute(const PointT& p1, const PointT& p2)
108  {
109  return (std::fabs(p1.curvature) * std::fabs(p2.curvature));
110  }
111  };
112 
113  /** Squared Euclidean distance in RGB space.
114  *
115  * \f[
116  * d_{xyz}(v_i,v_j) = ||rgb_i-rgb_j||^2
117  * \f]
118  *
119  * Requires that the point type has *rgb* or *rgba* field.
120  *
121  * \ingroup graph
122  * \author Sergey Alexandrov
123  */
124  struct RGB
125  {
126  typedef pcl::traits::has_color<boost::mpl::_1> is_compatible;
127 
128  template <typename PointT> float
129  static compute(const PointT& p1, const PointT& p2)
130  {
131  return ((p1.getBGRVector3cMap().template cast<float> () -
132  p2.getBGRVector3cMap().template cast<float> ()).norm() / 255.0f);
133  }
134  };
135 
136 }
137 
138 
139 #endif /* PCL_GRAPH_EDGE_WEIGHT_COMPUTER_TERMS_H */
140 
pcl::graph::terms::XYZ::compute
static float compute(const PointT &p1, const PointT &p2)
Definition: edge_weight_computer_terms.h:62
pcl::graph::terms::XYZ
Squared Euclidean distance between points.
Definition: edge_weight_computer_terms.h:57
pcl::graph::terms::RGB
Squared Euclidean distance in RGB space.
Definition: edge_weight_computer_terms.h:124
pcl::graph::terms::Curvature::compute
static float compute(const PointT &p1, const PointT &p2)
Definition: edge_weight_computer_terms.h:107
pcl::graph::terms::Curvature
Product of curvatures.
Definition: edge_weight_computer_terms.h:102
pcl::graph::terms::Normal::is_compatible
pcl::traits::has_normal< boost::mpl::_1 > is_compatible
Definition: edge_weight_computer_terms.h:82
pcl::graph::terms::RGB::compute
static float compute(const PointT &p1, const PointT &p2)
Definition: edge_weight_computer_terms.h:129
pcl::graph::terms
Definition: edge_weight_computer_terms.h:43
pcl::graph::terms::Normal
Angular distance between normals.
Definition: edge_weight_computer_terms.h:80
pcl::graph::terms::Curvature::is_compatible
pcl::traits::has_curvature< boost::mpl::_1 > is_compatible
Definition: edge_weight_computer_terms.h:104
pcl::graph::terms::Normal::compute
static float compute(const PointT &p1, const PointT &p2)
Definition: edge_weight_computer_terms.h:85
armarx::PointT
pcl::PointXYZRGBL PointT
Definition: Common.h:28
pcl::graph::terms::XYZ::is_compatible
pcl::traits::has_xyz< boost::mpl::_1 > is_compatible
Definition: edge_weight_computer_terms.h:59
pcl::graph::terms::RGB::is_compatible
pcl::traits::has_color< boost::mpl::_1 > is_compatible
Definition: edge_weight_computer_terms.h:126