29 os <<
"Mean: " << et.
Mean <<
", STD:" << et.
STD <<
", Median: " << et.
Median
30 <<
", IQR: " << et.
IQR <<
", Max: " << et.
Max << std::endl;
36 this->nControlPoints = other.nControlPoints;
37 this->nDoF = other.nDoF;
38 this->dim = other.dim;
39 this->controlNet = other.controlNet;
40 this->spreadAngles = other.spreadAngles;
41 this->index = other.index;
42 this->center = other.center;
43 this->partialDerivatives = other.partialDerivatives;
52 this->spreadAngles = Vector::Constant(nDoF, spreadAngle);
53 this->nControlPoints = pow(3.0, this->nDoF);
55 this->controlNet = Matrix::Zero(this->dim, this->nControlPoints);
56 this->createIndices();
57 this->center = Vector::Zero(this->nDoF);
58 this->partialDerivatives =
59 std::vector<Matrix>(this->nDoF, Matrix::Zero(this->dim, this->nControlPoints));
65 int nSamples = shape.cols();
69 Matrix errors = this->controlNet * this->createSLE(proprioception) - shape;
71 std::vector<Real> summed_squared_errors(nSamples, 0.0f);
73 error_values.
Mean = 0;
75 for (
int iSamples = 0; iSamples < nSamples; iSamples++)
79 for (
int iDim = 0; iDim < this->dim; iDim++)
81 sum += pow(errors(iDim, iSamples), 2);
85 summed_squared_errors[iSamples] =
sqrt(sum);
89 error_values.
Mean /= nSamples;
90 std::sort(summed_squared_errors.begin(), summed_squared_errors.end());
92 error_values.
Median = summed_squared_errors[nSamples / 2];
94 summed_squared_errors[(nSamples * 3) / 4] - summed_squared_errors[nSamples / 4];
97 *std::max_element(summed_squared_errors.begin(), summed_squared_errors.end());
106 this->index.resize(nControlPoints, nDoF);
108 for (
int iControlPoints = 0; iControlPoints < nControlPoints; iControlPoints++)
110 int decimal = iControlPoints;
113 for (
int iDoF = 0; iDoF < nDoF; iDoF++)
116 this->index(iControlPoints, iDoF) = decimal % 3;
130 assert(proprioception.rows() == nDoF);
131 int nSamples = proprioception.cols();
132 Matrix SLE(nControlPoints, nSamples);
135 Real bincoeff[] = {1, 2, 1};
137 for (
int iSamples = 0; iSamples < nSamples; iSamples++)
141 for (
int iControlPoints = 0; iControlPoints < nControlPoints; iControlPoints++)
143 SLE(iControlPoints, iSamples) = 1.0;
146 for (
int iDoF = 0; iDoF < this->nDoF; iDoF++)
148 int idx = this->index(iControlPoints, iDoF);
152 Real t = std::tan((proprioception(iDoF, iSamples) - center(iDoF)) / 2.0) /
153 tan(this->spreadAngles[iDoF] / 2.0) / 2.0 +
159 gamma = std::cos(this->spreadAngles[iDoF]);
167 SLE(iControlPoints, iSamples) *=
168 gamma * bincoeff[idx] * pow(t, idx) *
169 pow(1.0 - t, 2 - idx);
174 std::tan(a1 / 2.0) / tan(this->spreadAngles[iDoF] / 2.0) / 2.0 + 0.5;
176 std::tan(a2 / 2.0) / tan(this->spreadAngles[iDoF] / 2.0) / 2.0 + 0.5;
181 SLE(iControlPoints, iSamples) *= (1 - t1) * (1 - t2);
185 SLE(iControlPoints, iSamples) *= ((1 - t1) * t2 + (1 - t2) * t1) *
186 std::cos(this->spreadAngles[iDoF]);
190 SLE(iControlPoints, iSamples) *= t1 * t2;
197 weight += SLE(iControlPoints, iSamples);
202 for (
int iControlPoints = 0; iControlPoints < nControlPoints; iControlPoints++)
204 SLE(iControlPoints, iSamples) /= weight;
218 assert(proprioception.cols() == shape.cols());
219 assert(proprioception.rows() == this->nDoF);
220 assert(shape.rows() == this->dim);
221 Matrix SLE = this->createSLE(proprioception);
227 SLE.transpose().householderQr().solve(shape.transpose()).transpose();
231 this->controlNet =
PLS::solve(SLE, shape, threshold);
241 assert(proprioception.cols() == shape.cols());
242 assert(proprioception.rows() == this->nDoF);
249 int nSamples = proprioception.cols();
250 Matrix SLE = createSLE(proprioception);
253 for (
int iSamples = 0; iSamples < nSamples; iSamples++)
255 for (
int iDim = 0; iDim < this->dim; iDim++)
257 Vector temp = SLE.col(iSamples);
258 Real delta = shape(iDim, iSamples) - this->controlNet.row(iDim).dot(temp);
261 delta * SLE.col(iSamples) * (1.0 / SLE.col(iSamples).dot(SLE.col(iSamples)));
263 this->controlNet.row(iDim) += learnRate *
update.transpose();
271 std::ifstream file(fileName.c_str());
279 std::vector<double>
values;
286 while (getline(file, line))
289 std::stringstream linestream(line);
292 while (getline(linestream,
value,
','))
304 assert(lastCols == cols);
311 assert(this->dim == rows &&
"Incompatible output dimensions");
312 assert(this->nControlPoints == lastCols &&
"Incompatible input dimensions");
314 for (
int i = 0; i < this->dim; i++)
315 for (
int j = 0; j < this->nControlPoints; j++)
317 this->controlNet(i, j) =
318 values[i * this->nControlPoints +
323 ARMARX_DEBUG_S <<
"done (rows: " << rows <<
", Cols: " << lastCols
324 <<
", nDoF: " << this->nDoF <<
", dim: " << this->dim <<
")" << std::endl;
331 this->controlNet = Matrix::Zero(this->dim, this->nControlPoints);
347 return controlNet * createSLE(proprioception);
356 Vector o = controlNet * createSLE(proprioception);
360 proprioception, dim, (-1) * this->spreadAngles[dim], proprioception(dim, 0)) -
361 createSLE(proprioception, dim, this->spreadAngles[dim], proprioception(dim, 0)));
364 Vector3 e2 = this->controlNet * (createSLE(proprioception,
366 (-1) * this->spreadAngles[dim],
367 proprioception(dim, 0) + offset) -
368 createSLE(proprioception,
370 this->spreadAngles[dim],
371 proprioception(dim, 0) + offset));
376 Matrix result = Matrix::Zero(4, 4);
378 result.block(0, 0, 3, 1) = e1 / e1.norm();
379 result.block(0, 1, 3, 1) = e2 / e2.norm();
380 result.block(0, 2, 3, 1) = e3 / e3.norm();
381 result.block(0, 3, 3, 1) = o;
390 for (
int i = 0; i < this->nDoF; i++)
399 Vector SLEa = this->createSLE(
400 proprioception, iDoF, this->spreadAngles[iDoF], proprioception[iDoF],
false);
401 Vector SLEb = this->createSLE(
402 proprioception, iDoF, (-1) * this->spreadAngles[iDoF], proprioception[iDoF],
false);
403 Vector SLEc = this->createSLE(proprioception, -1, 0.0f, 0.0f,
false);
405 Vector SLE = ((SLEa - SLEb) * SLEc.sum() - (SLEa.sum() - SLEb.sum()) * SLEc) /
406 (SLEc.sum() * SLEc.sum());
407 return this->controlNet * SLE / cos(proprioception[iDoF] / 2.0f) /
408 cos(proprioception[iDoF] / 2.0f) / 2 / tan(this->spreadAngles[iDoF] / 2.0f);
414 Matrix Jacobian(this->dim, this->nDoF);
416 for (
int iDoF = 0; iDoF < this->nDoF; iDoF++)
427 return this->spreadAngles;
458 const Vector& spreadAngles,
462 kbm->controlNet = controlNet;
463 kbm->spreadAngles = spreadAngles;
464 kbm->center = center;
472 std::ofstream file(fileName.c_str(), std::ofstream::trunc);
473 file << std::scientific << std::fixed
474 << std::setprecision(std::numeric_limits<double>::digits);
476 for (
int iDim = 0; iDim < this->dim; iDim++)
478 for (
int iControlPoints = 0; iControlPoints < this->nControlPoints - 1;
481 file << this->controlNet(iDim, iControlPoints) <<
",";
485 file << this->controlNet(iDim, nControlPoints - 1) << std::endl;
496 const Vector& spreadAngles,
503 controlNet = FoR->toLocalCoordinateSystem(chain->getTCP()->getGlobalPose())
509 controlNet.resize(12, 1);
510 Eigen::Transform<float, 3, Eigen::Affine> axis_x(
511 Eigen::Translation<float, 3>(1.0, 0.0, 0.0));
512 Eigen::Transform<float, 3, Eigen::Affine> axis_y(
513 Eigen::Translation<float, 3>(0.0, 1.0, 0.0));
514 controlNet.block(0, 0, 4, 1) =
515 FoR->toLocalCoordinateSystem(chain->getTCP()->getGlobalPose())
518 controlNet.block(4, 0, 4, 1) =
519 FoR->toLocalCoordinateSystem(chain->getTCP()->getGlobalPose() * axis_x.matrix())
522 controlNet.block(8, 0, 4, 1) =
523 FoR->toLocalCoordinateSystem(chain->getTCP()->getGlobalPose() * axis_y.matrix())
528 for (
int i = chain->getSize() - 1; i >= 0; --i)
531 controlNet.resize(controlNet.rows(), controlNet.cols() * 3);
533 VirtualRobot::RobotNodeRevolute* node =
534 dynamic_cast<VirtualRobot::RobotNodeRevolute*
>(chain->getNode(i).get());
535 Vector3 axis = node->getJointRotationAxisInJointCoordSystem().cast<
Real>();
537 toLocal = node->getGlobalPose().inverse().cast<
Real>();
539 Real factor = 1.0f / cos(spreadAngles(i));
540 Eigen::Transform<Real, 3, Eigen::Affine> rotation(
541 Eigen::AngleAxis<Real>(spreadAngles(i), axis));
542 Eigen::Transform<Real, 3, Eigen::Affine> scaling;
543 Vector3 diag = axis + factor * (Vector3::Constant(1.0f) - axis);
544 scaling = Eigen::Scaling(diag);
546 for (
int i = 0; i < temp.rows() / 4; i++)
548 controlNet.block(i * 4, 0, 4, temp.cols()) =
549 toGlobal * rotation.inverse() * toLocal * temp.block(i * 4, 0, 4, temp.cols());
550 controlNet.block(i * 4, temp.cols(), 4, temp.cols()) =
551 toGlobal * scaling * toLocal * temp.block(i * 4, 0, 4, temp.cols());
552 controlNet.block(i * 4, 2 * temp.cols(), 4, temp.cols()) =
553 toGlobal * rotation * toLocal * temp.block(i * 4, 0, 4, temp.cols());
557 Vector center = Vector::Constant(chain->getSize(), 0.0f);
565 controlNet.block(0, 0, 3, controlNet.cols()));
569 Matrix reducedControlNet(9, controlNet.cols());
570 reducedControlNet.block(0, 0, 3, controlNet.cols()) =
571 controlNet.block(0, 0, 3, controlNet.cols());
572 reducedControlNet.block(3, 0, 3, controlNet.cols()) =
573 controlNet.block(4, 0, 3, controlNet.cols());
574 reducedControlNet.block(6, 0, 3, controlNet.cols()) =
575 controlNet.block(8, 0, 3, controlNet.cols());
576 return KBM::createKBM(chain->getSize(), 9, center, spreadAngles, reducedControlNet);