DenseGraphCRF.hpp
Go to the documentation of this file.
1 /*
2  * This file is part of ArmarX.
3  *
4  * ArmarX is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * ArmarX is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program. If not, see <http://www.gnu.org/licenses/>.
15  *
16  * @package ROBDEKON::ArmarXObjects::DenseCRFSegmentationProcessor
17  * @author Christoph Pohl ( christoph dot pohl at kit dot edu )
18  * @date 2019
19  * @copyright http://www.gnu.org/licenses/gpl-2.0.txt
20  * GNU General Public License
21  */
22 
23 #ifndef ROBDEKON_DENSEGRAPHCRF_HPP
24 #define ROBDEKON_DENSEGRAPHCRF_HPP
25 
26 #include <pcl/point_types.h>
27 
29 
31 
32 #include "Common.h"
33 #include "DenseCRFFeatureTerms.h"
34 #include <densecrf.h>
35 #include <objective.h>
36 #include <pairwise.h>
37 #include <permutohedral.h>
38 
39 namespace armarx
40 {
41  template <class GraphT>
42  class DenseGraphCRF : private DenseCRF
43  {
44  private:
45  // int N_ from base class == Number of Vertices in the Graph
46  // int M_ from base class == Number of Classes
48  typedef typename boost::graph_traits<GraphT>::vertex_descriptor VtxId;
49  GraphPtrT _graph;
50 
51  public:
53 
54  template <typename FeatureT>
55  inline void
56  addPairwiseGaussianFeature(std::vector<float> sigma,
57  LabelCompatibility* function,
58  KernelType kernel_type = DIAG_KERNEL,
59  NormalizationType normalization_type = NORMALIZE_SYMMETRIC)
60  {
62  FeatureT functor(*_graph);
63  Eigen::MatrixXf features = functor.computeFeatures(sigma);
64  addPairwiseEnergy(features, function, kernel_type, normalization_type);
65  }
66 
67  inline void
68  addCombinedGaussianFeature(std::vector<float> sigma,
69  bool use_rgb,
70  bool use_norm,
71  bool use_xyz,
72  bool use_curv,
73  bool use_time,
74  LabelCompatibility* function,
75  KernelType kernel_type = DIAG_KERNEL,
76  NormalizationType normalization_type = NORMALIZE_SYMMETRIC)
77  {
80  *_graph, use_rgb, use_norm, use_xyz, use_curv, use_time);
81  Eigen::MatrixXf features = functor.computeFeatures(sigma);
82  addPairwiseEnergy(features, function, kernel_type, normalization_type);
83  }
84 
85  void computeUnaryEnergyFromGraph(float gt_prob);
86 
87  void map(int n_iterations);
88 
89  Eigen::VectorXf map_and_confidence(int n_iterations);
90  // void addPairwiseGaussianVector();
91  };
92 
93  template <class GraphT>
95  DenseCRF(static_cast<int>(boost::num_vertices(*Graph)), M), _graph(Graph)
96  {
97  }
98 
99  template <class GraphT>
100  void
102  {
103  ARMARX_TRACE;
104  Eigen::MatrixXf energy(M_, N_);
105  ARMARX_CHECK_EXPRESSION(static_cast<int>(boost::num_vertices(*_graph)) == N_);
106  const float u_energy = -log(1.0 / M_);
107  const float n_energy = -log((1.0 - gt_prob) / (M_ - 1));
108  const float p_energy = -log(gt_prob);
109  energy.fill(u_energy);
110  for (int k = 0; k < N_; k++)
111  {
112  // Set the energy
113  int r = (*_graph)[static_cast<VtxId>(k)].label;
114  if (r >= 0)
115  {
116  ARMARX_TRACE;
117  energy.col(k).fill(n_energy);
118  energy(r, k) = p_energy;
119  }
120  }
121  ARMARX_TRACE;
122  setUnaryEnergy(energy);
123  }
124 
125  template <class GraphT>
126  void
127  DenseGraphCRF<GraphT>::map(int n_iterations)
128  {
129  ARMARX_TRACE;
130  VectorXs map_result = DenseCRF::map(n_iterations);
131  const int res_size = map_result.size();
132  ARMARX_CHECK_EXPRESSION(res_size == static_cast<int>(boost::num_vertices(*_graph)));
133  for (int i = 0; i < res_size; i++)
134  {
135  (*_graph)[static_cast<VertexId>(i)].label = map_result[i];
136  }
137  }
138 
139  template <class GraphT>
140  Eigen::VectorXf
142  {
143  ARMARX_TRACE;
144  Eigen::MatrixXf Q = inference(n_iterations);
145  // Find the map - VectorXs
146  Eigen::Matrix<short, Eigen::Dynamic, 1> map_result = currentMap(Q);
147  const int res_size = map_result.size();
148  ARMARX_CHECK_EXPRESSION(res_size == static_cast<int>(boost::num_vertices(*_graph)));
149  Eigen::VectorXf confidence_score;
150  ConfidenceMap cm = boost::get(boost::vertex_confidence_t(), _graph->m_graph);
151 
152  confidence_score.resize(res_size);
153  for (int i = 0; i < res_size; i++)
154  {
155  (*_graph)[static_cast<VtxId>(i)].label = map_result[i];
156  boost::put(cm, static_cast<VtxId>(i), Q(map_result[i], i));
157  confidence_score[i] = Q(map_result[i], i);
158  }
159  return confidence_score;
160  }
161 } // namespace armarx
162 
163 
164 #endif //ROBDEKON_DENSEGRAPHCRF_HPP
armarx::DenseGraphCRF::computeUnaryEnergyFromGraph
void computeUnaryEnergyFromGraph(float gt_prob)
Definition: DenseGraphCRF.hpp:101
armarx::VariableCombinedNormalizedFeature
Definition: DenseCRFFeatureTerms.h:293
boost::shared_ptr< GraphT >
armarx::ConfidenceMap
boost::property_map< CloudGraphWithTimestamp, boost::vertex_confidence_t >::type ConfidenceMap
Definition: Common.h:77
DenseCRFFeatureTerms.h
Common.h
armarx::VariableCombinedNormalizedFeature::computeFeatures
Eigen::MatrixXf computeFeatures(std::vector< float > sigma)
Definition: DenseCRFFeatureTerms.h:317
armarx::VertexId
boost::graph_traits< Graph >::vertex_descriptor VertexId
Definition: Common.h:68
boost
Definition: ApplicationOptions.h:37
boost::vertex_confidence_t
Definition: Common.h:21
ARMARX_TRACE
#define ARMARX_TRACE
Definition: trace.h:77
armarx::DenseGraphCRF::DenseGraphCRF
DenseGraphCRF(GraphPtrT Graph, int M)
Definition: DenseGraphCRF.hpp:94
armarx::DenseGraphCRF::addPairwiseGaussianFeature
void addPairwiseGaussianFeature(std::vector< float > sigma, LabelCompatibility *function, KernelType kernel_type=DIAG_KERNEL, NormalizationType normalization_type=NORMALIZE_SYMMETRIC)
Definition: DenseGraphCRF.hpp:56
armarx::DenseGraphCRF::map
void map(int n_iterations)
Definition: DenseGraphCRF.hpp:127
armarx::Graph
boost::subgraph< CloudGraph > Graph
Definition: Common.h:58
armarx::DenseGraphCRF
Definition: DenseGraphCRF.hpp:42
ExpressionException.h
ARMARX_CHECK_EXPRESSION
#define ARMARX_CHECK_EXPRESSION(expression)
This macro evaluates the expression and if it turns out to be false it will throw an ExpressionExcept...
Definition: ExpressionException.h:73
Eigen::Matrix
Definition: EigenForwardDeclarations.h:27
armarx::DenseGraphCRF::addCombinedGaussianFeature
void addCombinedGaussianFeature(std::vector< float > sigma, bool use_rgb, bool use_norm, bool use_xyz, bool use_curv, bool use_time, LabelCompatibility *function, KernelType kernel_type=DIAG_KERNEL, NormalizationType normalization_type=NORMALIZE_SYMMETRIC)
Definition: DenseGraphCRF.hpp:68
PointXYZRGBLNormal.h
armarx
This file offers overloads of toIce() and fromIce() functions for STL container types.
Definition: ArmarXTimeserver.cpp:27
armarx::DenseGraphCRF::map_and_confidence
Eigen::VectorXf map_and_confidence(int n_iterations)
Definition: DenseGraphCRF.hpp:141