ValveAttention.cpp
Go to the documentation of this file.
1 /*
2  * This file is part of ArmarX.
3  *
4  * ArmarX is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * ArmarX is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program. If not, see <http://www.gnu.org/licenses/>.
15  *
16  * @package VisionX::ArmarXObjects::ValveAttention
17  * @author Markus Grotz ( markus dot grotz at kit dot edu )
18  * @date 2016
19  * @copyright http://www.gnu.org/licenses/gpl-2.0.txt
20  * GNU General Public License
21  */
22 
23 #include "ValveAttention.h"
24 
25 #include <pcl/common/point_tests.h>
26 
29 
31 
32 #include <Image/ImageProcessor.h>
33 
34 namespace armarx
35 {
36 
37 
40  {
43  }
44 
45  void
47  {
48  usingProxy(getProperty<std::string>("ViewSelectionName").getValue());
49  usingProxy(getProperty<std::string>("RobotStateComponentName").getValue());
50 
51  providerName = getProperty<std::string>("providerName").getValue();
52  usingImageProvider(providerName);
53  usingPointCloudProvider(providerName);
54 
55  std::string graphFileName = "RobotAPI/ViewSelection/graph40k.gra";
56 
57  armarx::CMakePackageFinder finder("RobotAPI");
59 
60  if (ArmarXDataPath::getAbsolutePath(graphFileName, graphFileName))
61  {
62  saliencyEgosphereGraph = new CIntensityGraph(graphFileName);
63  ARMARX_VERBOSE << "Created egosphere graph with "
64  << saliencyEgosphereGraph->getNodes()->size() << "nodes";
65  graphLookupTable = new CGraphPyramidLookupTable(9, 18);
66  graphLookupTable->buildLookupTable(saliencyEgosphereGraph);
67  }
68  else
69  {
70  ARMARX_ERROR << "Could not find required graph file";
72  }
73 
74  headFrameName = getProperty<std::string>("HeadFrameName").getValue();
75  hog = new HoG();
76  hog->loadTrainingData(getProperty<std::string>("TrainingData").getValue());
77  hog->setParameters(true, true);
78  }
79 
80  void
82  {
83 
84  visionx::ImageType imageDisplayType = visionx::tools::typeNameToImageType("rgb");
85 
86  visionx::ImageProviderInfo imageProviderInfo =
87  getImageProvider(providerName, imageDisplayType);
88 
89  numImages = imageProviderInfo.numberImages;
90 
91  images = new CByteImage*[numImages];
92  for (int i = 0; i < numImages; i++)
93  {
94  images[i] = visionx::tools::createByteImage(imageProviderInfo);
95  }
96 
97  numResultImages = 3;
98  result = new CByteImage*[numResultImages];
99  result[0] = images[0];
100  result[1] = visionx::tools::createByteImage(imageProviderInfo);
101  result[2] = visionx::tools::createByteImage(imageProviderInfo);
102 
103 
104  visionx::ImageDimension dimension(images[0]->width, images[0]->height);
105  enableResultImages(numResultImages, dimension, visionx::tools::typeNameToImageType("rgb"));
106 
107  robotStateComponent = getProxy<RobotStateComponentInterfacePrx>(
108  getProperty<std::string>("RobotStateComponentName").getValue());
109 
112 
113  viewSelection = getProxy<ViewSelectionInterfacePrx>(
114  getProperty<std::string>("ViewSelectionName").getValue());
115  }
116 
117  void
119  {
120  }
121 
122  void
124  {
125  for (int i = 0; i < numImages; i++)
126  {
127  delete images[i];
128  }
129  delete[] images;
130 
131  for (int i = 0; i < numResultImages; i++)
132  {
133  delete result[i];
134  }
135  delete[] result;
136 
137  delete graphLookupTable;
138  delete saliencyEgosphereGraph;
139  delete hog;
140  }
141 
142  void
144  {
145  ARMARX_IMPORTANT << "process";
146 
147  std::lock_guard<std::mutex> lock(mutex);
148 
149  pcl::PointCloud<pcl::PointXYZRGBA>::Ptr currentPointCloud(
150  new pcl::PointCloud<pcl::PointXYZRGBA>());
151 
152 
153  ARMARX_VERBOSE << "waiting for images";
154  if (!waitForImages(providerName))
155  {
156  ARMARX_WARNING << "Timeout while waiting for images";
157  return;
158  }
159 
160  ARMARX_VERBOSE << "waiting for pointcloud";
161  if (!waitForPointClouds(providerName))
162  {
163  ARMARX_WARNING << "Timeout while waiting for pointcloud";
164  return;
165  }
166 
167  ARMARX_VERBOSE << "getting images";
168  if (getImages(images) != numImages)
169  {
170  ARMARX_WARNING << "Unable to transfer or read images";
171  return;
172  }
173 
174  ARMARX_VERBOSE << "getting pointcloud";
175  if (!getPointClouds(currentPointCloud))
176  {
177  ARMARX_WARNING << "Unable to transfer or read point cloud";
178  return;
179  }
180 
181 
182  RemoteRobot::synchronizeLocalClone(robot, robotStateComponent);
183 
184  saliencyEgosphereGraph->set(0.0);
185 
186  const int scaleFactor = 4; //images[0]->width / 255;
187 
188  int width = images[0]->width / scaleFactor;
189  int height = images[0]->height / scaleFactor;
190  CByteImage* image = new CByteImage(width, height, CByteImage::eRGB24);
191  ::ImageProcessor::Resize(images[0], image);
192 
193  ARMARX_VERBOSE << "downscaling image to: " << width << "x" << height;
194 
195  //CByteImage* saliencyImage = result[0]; //new CByteImage(width, height, CByteImage::eRGB24);
196  CFloatImage* saliencyImage = new CFloatImage(width, height, 1);
197 
198 
199  ARMARX_VERBOSE << "computing saliency map";
200  IceUtil::Time startTime = TimeUtil::GetTime();
201 
202  hog->findSalientRegions(image, saliencyImage);
203  //*************************test for Cluster**************************/
204  std::vector<cv::Point2f> points;
205  cv::Mat outputLable;
206  cv::Mat centers;
207  std::map<int, int> saliencyHist;
208  float priorityProcent = 0.9;
209  int clusterNum = 3;
210  int intensityThreshold = 255;
211  int saliencySum = 0;
212  int saliencyImageWidth = saliencyImage->width;
213 
214  for (int i = 0; i < saliencyImage->height; i++)
215  {
216  for (int j = 0; j < saliencyImageWidth; j++)
217  {
218  saliencyHist[(int)(saliencyImage->pixels[i * saliencyImageWidth + j] * 255.0)]++;
219  }
220  }
221 
222  // determine 90% number of non-zero salient values
223  int usefulSampleAmount =
224  priorityProcent * (saliencyImage->width * saliencyImage->height - saliencyHist[0]);
225  for (int i = 1; i <= 255; i++)
226  {
227  if (!saliencyHist.count(i))
228  {
229  continue;
230  }
231  saliencySum += saliencyHist[i];
232  if (saliencySum > usefulSampleAmount)
233  {
234  intensityThreshold = i;
235  break;
236  }
237  }
238 
239  for (int i = 0; i < saliencyImage->height; i++)
240  {
241  for (int j = 0; j < saliencyImageWidth; j++)
242  {
243  if (saliencyImage->pixels[i * saliencyImageWidth + j] * 255.0 > intensityThreshold)
244  {
245  points.push_back(cv::Point2f(j, i));
246  }
247  }
248  }
249 
250  cv::Mat samples(points.size(), 2, CV_32F);
251  for (size_t i = 0; i < points.size(); i++)
252  {
253  samples.at<float>(i, 0) = points[i].x;
254  samples.at<float>(i, 1) = points[i].y;
255  }
256 
257  if (points.size())
258  {
259  cv::kmeans(samples,
260  clusterNum,
261  outputLable,
262  cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 20, 0.1),
263  10,
264  cv::KMEANS_PP_CENTERS,
265  centers);
266  }
267 
268  // calculate the number of elements in each cluster and get first two biggest cluster
269  std::map<int, int> numberOfEachCluster;
270  for (int i = 0; i < samples.rows; i++)
271  {
272  numberOfEachCluster[outputLable.at<int>(i, 0)]++;
273  }
274  size_t maxCluster = 0;
275  int secondCluster;
276  for (size_t i = 0; i < numberOfEachCluster.size(); i++)
277  {
278  if (numberOfEachCluster[i] > numberOfEachCluster[maxCluster])
279  {
280  maxCluster = i;
281  }
282  }
283  if (maxCluster != 0)
284  {
285  secondCluster = 0;
286  }
287  else
288  {
289  secondCluster = 1;
290  }
291  for (size_t i = 0; i < numberOfEachCluster.size(); i++)
292  {
293  if ((i != maxCluster) && numberOfEachCluster[i] > numberOfEachCluster[secondCluster])
294  {
295  secondCluster = i;
296  }
297  }
298 
299  //*************************test for Cluster END**************************/
300 
301  ARMARX_VERBOSE << "done computing saliency map. took "
302  << (TimeUtil::GetTime() - startTime).toMilliSeconds() << "ms";
303 
304  delete image;
305 
306 #pragma omp parallel for
307  for (int i = 0; i < images[0]->height; i++)
308  {
309  for (int j = 0; j < images[0]->width; j++)
310  {
311  int idx = i * images[0]->width + j;
312 
313  float saliency =
314  saliencyImage->pixels[(i / scaleFactor * width) + (j / scaleFactor)];
315 
316  result[1]->pixels[3 * idx + 0] = 255 * saliency;
317  result[1]->pixels[3 * idx + 1] = 255 * saliency;
318  result[1]->pixels[3 * idx + 2] = 255 * saliency;
319 
320  result[2]->pixels[3 * idx + 0] =
321  (0.2 + 0.8 * saliency) * result[0]->pixels[3 * idx + 0];
322  result[2]->pixels[3 * idx + 1] =
323  (0.2 + 0.8 * saliency) * result[0]->pixels[3 * idx + 1];
324  result[2]->pixels[3 * idx + 2] =
325  (0.2 + 0.8 * saliency) * result[0]->pixels[3 * idx + 2];
326  }
327  }
328 
329 
330  /*********transform cluster daten (the points near cluster centers) from pointcloud to sphere **********/
331  /*
332  for (int i = 0; i < samples.rows; i++)
333  {
334  int downScaleIdx = ((int)samples.at<float>(i, 1) * width) + ((int)samples.at<float>(i, 0));
335  int idx = (int)samples.at<float>(i, 1) * scaleFactor * images[0]->width + (int)samples.at<float>(i, 0) * scaleFactor;
336  float saliency = saliencyImage->pixels[downScaleIdx];
337  int clusterLabel = outputLable.at<int>(i, 0);
338  float distanceToClusterCenter = sqrt(pow((centers.at<float>(clusterLabel, 0) - samples.at<float>(i, 0)), 2) + pow((centers.at<float>(clusterLabel, 1) - samples.at<float>(i, 1)), 2));
339 
340  if (saliency > 0 && (distanceToClusterCenter < (width / 5)))
341  {
342  if (idx >= (int)currentPointCloud->points.size())
343  {
344  continue;
345  }
346 
347  Eigen::Vector3f vec = currentPointCloud->points[idx].getVector3fMap();
348 
349  if (!pcl::isFinite(currentPointCloud->points[idx]))
350  {
351  continue;
352  }
353  TSphereCoord positionInSphereCoordinates;
354  //armarx::GlobalFrame
355  FramedPositionPtr currentViewTarget = new FramedPosition(vec, "DepthCamera", robotStateComponent->getSynchronizedRobot()->getName());
356  currentViewTarget->changeFrame(robot, headFrameName);
357 
358  MathTools::convert(currentViewTarget->toEigen(), positionInSphereCoordinates);
359  int closestNodeIndex = graphLookupTable->getClosestNode(positionInSphereCoordinates);
360  CIntensityNode* currentNode = ((CIntensityNode*)saliencyEgosphereGraph->getNodes()->at(closestNodeIndex));
361 
362  float currentSaliency = currentNode->getIntensity();
363 
364  // give priority to the cluster which has the most elements, because this cluster always near valve
365  if (clusterLabel == maxCluster)
366  {
367  //consider about history? & predict --> consider about observation & predict
368  currentSaliency = std::min(1.0f, currentSaliency + saliency * (float)1.3);
369 
370  //consider only about predict
371  //currentSaliency = std::min(1.0f, saliency * (float)1.3);
372  //std::cout << "currentSaliency!! " << currentSaliency << std::endl;
373  }
374  else
375  {
376  if (outputLable.at<int>(i, 0) == secondCluster)
377  {
378  currentSaliency = std::min(1.0f, currentSaliency + saliency * (float)1.02);
379  //currentSaliency = std::min(1.0f, saliency * (float)1.02);
380  }
381  }
382  currentNode->setIntensity(currentSaliency);
383  }
384  }
385 
386  */
387  /*********transform cluster daten from pointcloud to sphere ***** END*****/
388 
389  /*********transform cluster centers from pointcloud to sphere ***** *****/
390  for (int i = 0; i < centers.rows; i++)
391  {
392  int downScaleIdx =
393  ((int)centers.at<float>(i, 1) * width) + ((int)centers.at<float>(i, 0));
394  int idx = (int)centers.at<float>(i, 1) * scaleFactor * images[0]->width +
395  (int)centers.at<float>(i, 0) * scaleFactor;
396  //attention: center's saliency may shouldn't directly get from saliency map, because it's saliency can be low
397  float saliency = saliencyImage->pixels[downScaleIdx];
398 
399  if (idx >= (int)currentPointCloud->points.size())
400  {
401  continue;
402  }
403 
404  Eigen::Vector3f vec = currentPointCloud->points[idx].getVector3fMap();
405 
406  if (!pcl::isFinite(currentPointCloud->points[idx]))
407  {
408  continue;
409  }
410  TSphereCoord positionInSphereCoordinates;
411  //armarx::GlobalFrame
412  FramedPositionPtr currentViewTarget = new FramedPosition(
413  vec, "DepthCamera", robotStateComponent->getSynchronizedRobot()->getName());
414  currentViewTarget->changeFrame(robot, headFrameName);
415 
416  MathTools::convert(currentViewTarget->toEigen(), positionInSphereCoordinates);
417  int closestNodeIndex = graphLookupTable->getClosestNode(positionInSphereCoordinates);
418 
419  float halfCameraOpeningAngle = 12.0 * M_PI / 180.0;
420  float modifiedHalfCameraOpeningAngle = halfCameraOpeningAngle;
421  float distance = currentViewTarget->toEigen().norm();
422 
423 
424  if (distance > 6000)
425  {
426  ARMARX_WARNING << "position is too far away." << distance;
427  return;
428  }
429 
430  const float distanceThreshold = 1500;
431  if (distance < distanceThreshold)
432  {
433  modifiedHalfCameraOpeningAngle = (distance - 0.1f * distanceThreshold) /
434  (0.9f * distanceThreshold) *
435  halfCameraOpeningAngle;
436  modifiedHalfCameraOpeningAngle = std::max(0.0f, modifiedHalfCameraOpeningAngle);
437  }
438 
439 
440  std::vector<bool> visitedNodes(saliencyEgosphereGraph->getNodes()->size(), false);
441  addSaliencyRecursive(closestNodeIndex,
442  visitedNodes,
443  saliency,
444  positionInSphereCoordinates,
445  modifiedHalfCameraOpeningAngle);
446  }
447  /*********transform cluster centers from pointcloud to sphere ***** END*****/
448 
449  //*************************test for Cluster**************************/
450  int index;
451  for (std::size_t row = 0; centers.rows > 0 && row < static_cast<std::size_t>(centers.rows);
452  row++)
453  {
454  for (std::size_t i = 0; i < 8; i++)
455  {
456  for (std::size_t j = 0; j < 8; j++)
457  {
458  index =
459  3 * (((int)centers.at<float>(row, 1) * scaleFactor + i) * images[0]->width +
460  ((int)centers.at<float>(row, 0) * scaleFactor + j));
461  result[2]->pixels[index] = 255;
462  result[2]->pixels[index + 1] = 255 * (row == maxCluster);
463  result[2]->pixels[index + 2] =
464  255 * (row == static_cast<std::size_t>(secondCluster));
465  }
466  }
467  }
468 
469  //*************************test for Cluster END**************************/
470 
471  ARMARX_VERBOSE << "mapping took !!!!! "
472  << (TimeUtil::GetTime() - startTime).toMilliSeconds() << "ms";
473 
474  provideResultImages(result);
475 
476  SaliencyMapBasePtr primitiveSaliency = new SaliencyMapBase();
477  primitiveSaliency->name = "ValveAttention";
478  saliencyEgosphereGraph->graphToVec(primitiveSaliency->map);
479  viewSelection->updateSaliencyMap(primitiveSaliency);
480 
481  ARMARX_IMPORTANT << "process finished";
482  }
483 
484  void
485  ValveAttention::addSaliencyRecursive(const int currentNodeIndex,
486  std::vector<bool>& visitedNodes,
487  const float saliency,
488  const TSphereCoord objectSphereCoord,
489  const float maxDistanceOnArc)
490  {
491 
492  // distance on arc between object projection center and node,
493  // normalized by the maximal viewing angle of the camera (=> in [0,1])
494  float normalizedDistance =
496  objectSphereCoord,
497  saliencyEgosphereGraph->getNodes()->at(currentNodeIndex)->getPosition()) /
498  maxDistanceOnArc;
499 
500  // increase value of node
501  float newValue = ((CIntensityNode*)saliencyEgosphereGraph->getNodes()->at(currentNodeIndex))
502  ->getIntensity() +
503  (1.0f - 0.5f * normalizedDistance * normalizedDistance) * saliency;
504 
505  if (newValue > 1.0)
506  {
507  ARMARX_INFO << "saliency is greater than 1.0: " << newValue;
508  newValue = std::min(1.0f, newValue);
509  }
510 
511  ((CIntensityNode*)saliencyEgosphereGraph->getNodes()->at(currentNodeIndex))
512  ->setIntensity(newValue);
513 
514  // mark node as visited for this object
515  visitedNodes.at(currentNodeIndex) = true;
516 
517  // recurse on neighbours if they were not yet visited and close enough to the object projection center
518  int neighbourIndex;
519 
520  for (size_t i = 0; i < saliencyEgosphereGraph->getNodeAdjacency(currentNodeIndex)->size();
521  i++)
522  {
523  neighbourIndex = saliencyEgosphereGraph->getNodeAdjacency(currentNodeIndex)->at(i);
524 
525  if (!visitedNodes.at(neighbourIndex))
526  {
528  objectSphereCoord,
529  saliencyEgosphereGraph->getNodes()->at(neighbourIndex)->getPosition()) <=
530  maxDistanceOnArc)
531  {
532  addSaliencyRecursive(neighbourIndex,
533  visitedNodes,
534  saliency,
535  objectSphereCoord,
536  maxDistanceOnArc);
537  }
538  else
539  {
540  visitedNodes.at(neighbourIndex) = true;
541  }
542  }
543  }
544  }
545 } // namespace armarx
RemoteRobot.h
ARMARX_VERBOSE
#define ARMARX_VERBOSE
Definition: Logging.h:187
armarx::eFull
@ eFull
Definition: MorphingItem.h:35
CIntensityNode
Definition: IntensityGraph.h:25
ARMARX_IMPORTANT
#define ARMARX_IMPORTANT
Definition: Logging.h:190
visionx::ImageProviderInfo::numberImages
int numberImages
Number of images.
Definition: ImageProcessor.h:519
index
uint8_t index
Definition: EtherCATFrame.h:59
armarx::RemoteRobot::synchronizeLocalClone
static bool synchronizeLocalClone(VirtualRobot::RobotPtr robot, RobotStateComponentInterfacePrx robotStatePrx)
Definition: RemoteRobot.cpp:522
armarx::RemoteRobot::createLocalCloneFromFile
static VirtualRobot::RobotPtr createLocalCloneFromFile(RobotStateComponentInterfacePrx robotStatePrx, VirtualRobot::RobotIO::RobotDescription loadMode=VirtualRobot::RobotIO::eFull)
This is a convenience function for createLocalClone, which automatically gets the filename from the R...
Definition: RemoteRobot.cpp:512
armarx::ValveAttention::onConnectPointCloudAndImageProcessor
void onConnectPointCloudAndImageProcessor() override
Implement this method in your PointCloudAndImageProcessor in order execute parts when the component i...
Definition: ValveAttention.cpp:81
HoG
Definition: hog.h:47
armarx::CMakePackageFinder
The CMakePackageFinder class provides an interface to the CMake Package finder capabilities.
Definition: CMakePackageFinder.h:52
visionx::tools::createByteImage
CByteImage * createByteImage(const ImageFormatInfo &imageFormat, const ImageType imageType)
Creates a ByteImage for the destination type specified in the given imageProviderInfo.
visionx::ImageProviderInfo
Definition: ImageProcessor.h:479
IceInternal::Handle< FramedPosition >
CGraphPyramidLookupTable
Definition: GraphPyramidLookupTable.h:23
CIntensityGraph
Definition: IntensityGraph.h:51
M_PI
#define M_PI
Definition: MathTools.h:17
armarx::ValveAttention::onInitPointCloudAndImageProcessor
void onInitPointCloudAndImageProcessor() override
Setup the vision component.
Definition: ValveAttention.cpp:46
armarx::CMakePackageFinder::getDataDir
std::string getDataDir() const
Definition: CMakePackageFinder.h:194
EPS
#define EPS
Definition: gdiam.cpp:1945
max
T max(T t1, T t2)
Definition: gdiam.h:51
ARMARX_ERROR
#define ARMARX_ERROR
Definition: Logging.h:196
armarx::ValveAttention::onDisconnectPointCloudAndImageProcessor
void onDisconnectPointCloudAndImageProcessor() override
Implement this method in the PointCloudAndImageProcessor in order to execute parts when the component...
Definition: ValveAttention.cpp:118
armarx::armem::Time
armarx::core::time::DateTime Time
Definition: forward_declarations.h:13
CSphericalGraph::getNodeAdjacency
std::vector< int > * getNodeAdjacency(int nIndex)
Definition: SphericalGraph.cpp:188
armarx::TimeUtil::GetTime
static IceUtil::Time GetTime(TimeMode timeMode=TimeMode::VirtualTime)
Get the current time.
Definition: TimeUtil.cpp:42
armarx::Component::getConfigIdentifier
std::string getConfigIdentifier()
Retrieve config identifier for this component as set in constructor.
Definition: Component.cpp:79
CMakePackageFinder.h
armarx::ValveAttention::process
void process() override
Process the vision component.
Definition: ValveAttention.cpp:143
ARMARX_INFO
#define ARMARX_INFO
Definition: Logging.h:181
armarx::ArmarXDataPath::addDataPaths
static void addDataPaths(const std::string &dataPathList)
Definition: ArmarXDataPath.cpp:554
IceUtil::Handle
Definition: forward_declarations.h:30
visionx::tools::typeNameToImageType
ImageType typeNameToImageType(const std::string &imageTypeName)
Converts an image type name as string into an ImageType integer.
Definition: TypeMapping.cpp:42
CSphericalGraph::getNodes
TNodeList * getNodes()
Definition: SphericalGraph.cpp:170
distance
double distance(const Point &a, const Point &b)
Definition: point.hpp:95
armarx::ArmarXDataPath::getAbsolutePath
static bool getAbsolutePath(const std::string &relativeFilename, std::string &storeAbsoluteFilename, const std::vector< std::string > &additionalSearchPaths={}, bool verbose=true)
Definition: ArmarXDataPath.cpp:109
armarx::ValveAttention::createPropertyDefinitions
armarx::PropertyDefinitionsPtr createPropertyDefinitions() override
Definition: ValveAttention.cpp:39
armarx::VariantType::FramedPosition
const VariantTypeId FramedPosition
Definition: FramedPose.h:38
min
T min(T t1, T t2)
Definition: gdiam.h:44
armarx::handleExceptions
void handleExceptions()
Definition: Exception.cpp:157
ARMARX_WARNING
#define ARMARX_WARNING
Definition: Logging.h:193
armarx::PropertyDefinitionsPtr
IceUtil::Handle< class PropertyDefinitionContainer > PropertyDefinitionsPtr
PropertyDefinitions smart pointer type.
Definition: forward_declarations.h:35
ValveAttention.h
MathTools::getDistanceOnArc
static float getDistanceOnArc(TSphereCoord p1, TSphereCoord p2)
Definition: MathTools.cpp:302
ArmarXDataPath.h
TSphereCoord
Definition: Structs.h:23
MathTools::convert
static void convert(TSphereCoord in, Eigen::Vector3d &out)
Definition: MathTools.cpp:440
armarx
This file offers overloads of toIce() and fromIce() functions for STL container types.
Definition: ArmarXTimeserver.cpp:27
armarx::ValveAttentionPropertyDefinitions
Definition: ValveAttention.h:54
armarx::ValveAttention::onExitPointCloudAndImageProcessor
void onExitPointCloudAndImageProcessor() override
Exit the ImapeProcessor component.
Definition: ValveAttention.cpp:123