25 #include <pcl/common/point_tests.h>
32 #include <Image/ImageProcessor.h>
48 usingProxy(getProperty<std::string>(
"ViewSelectionName").getValue());
49 usingProxy(getProperty<std::string>(
"RobotStateComponentName").getValue());
51 providerName = getProperty<std::string>(
"providerName").getValue();
52 usingImageProvider(providerName);
53 usingPointCloudProvider(providerName);
55 std::string graphFileName =
"RobotAPI/ViewSelection/graph40k.gra";
64 << saliencyEgosphereGraph->getNodes()->size() <<
"nodes";
66 graphLookupTable->buildLookupTable(saliencyEgosphereGraph);
74 headFrameName = getProperty<std::string>(
"HeadFrameName").getValue();
76 hog->loadTrainingData(getProperty<std::string>(
"TrainingData").getValue());
77 hog->setParameters(
true,
true);
87 getImageProvider(providerName, imageDisplayType);
91 images =
new CByteImage*[numImages];
92 for (
int i = 0; i < numImages; i++)
98 result =
new CByteImage*[numResultImages];
99 result[0] = images[0];
104 visionx::ImageDimension dimension(images[0]->width, images[0]->height);
107 robotStateComponent = getProxy<RobotStateComponentInterfacePrx>(
108 getProperty<std::string>(
"RobotStateComponentName").getValue());
113 viewSelection = getProxy<ViewSelectionInterfacePrx>(
114 getProperty<std::string>(
"ViewSelectionName").getValue());
125 for (
int i = 0; i < numImages; i++)
131 for (
int i = 0; i < numResultImages; i++)
137 delete graphLookupTable;
138 delete saliencyEgosphereGraph;
147 std::lock_guard<std::mutex> lock(mutex);
149 pcl::PointCloud<pcl::PointXYZRGBA>::Ptr currentPointCloud(
150 new pcl::PointCloud<pcl::PointXYZRGBA>());
154 if (!waitForImages(providerName))
161 if (!waitForPointClouds(providerName))
168 if (getImages(images) != numImages)
175 if (!getPointClouds(currentPointCloud))
184 saliencyEgosphereGraph->set(0.0);
186 const int scaleFactor = 4;
188 int width = images[0]->width / scaleFactor;
189 int height = images[0]->height / scaleFactor;
190 CByteImage* image =
new CByteImage(width, height, CByteImage::eRGB24);
191 ::ImageProcessor::Resize(images[0], image);
193 ARMARX_VERBOSE <<
"downscaling image to: " << width <<
"x" << height;
196 CFloatImage* saliencyImage =
new CFloatImage(width, height, 1);
202 hog->findSalientRegions(image, saliencyImage);
204 std::vector<cv::Point2f> points;
207 std::map<int, int> saliencyHist;
208 float priorityProcent = 0.9;
210 int intensityThreshold = 255;
212 int saliencyImageWidth = saliencyImage->width;
214 for (
int i = 0; i < saliencyImage->height; i++)
216 for (
int j = 0; j < saliencyImageWidth; j++)
218 saliencyHist[(int)(saliencyImage->pixels[i * saliencyImageWidth + j] * 255.0)]++;
223 int usefulSampleAmount =
224 priorityProcent * (saliencyImage->width * saliencyImage->height - saliencyHist[0]);
225 for (
int i = 1; i <= 255; i++)
227 if (!saliencyHist.count(i))
231 saliencySum += saliencyHist[i];
232 if (saliencySum > usefulSampleAmount)
234 intensityThreshold = i;
239 for (
int i = 0; i < saliencyImage->height; i++)
241 for (
int j = 0; j < saliencyImageWidth; j++)
243 if (saliencyImage->pixels[i * saliencyImageWidth + j] * 255.0 > intensityThreshold)
245 points.push_back(cv::Point2f(j, i));
250 cv::Mat samples(points.size(), 2, CV_32F);
251 for (
size_t i = 0; i < points.size(); i++)
253 samples.at<
float>(i, 0) = points[i].x;
254 samples.at<
float>(i, 1) = points[i].y;
264 cv::KMEANS_PP_CENTERS,
269 std::map<int, int> numberOfEachCluster;
270 for (
int i = 0; i < samples.rows; i++)
272 numberOfEachCluster[outputLable.at<
int>(i, 0)]++;
274 size_t maxCluster = 0;
276 for (
size_t i = 0; i < numberOfEachCluster.size(); i++)
278 if (numberOfEachCluster[i] > numberOfEachCluster[maxCluster])
291 for (
size_t i = 0; i < numberOfEachCluster.size(); i++)
293 if ((i != maxCluster) && numberOfEachCluster[i] > numberOfEachCluster[secondCluster])
306 #pragma omp parallel for
307 for (
int i = 0; i < images[0]->height; i++)
309 for (
int j = 0; j < images[0]->width; j++)
311 int idx = i * images[0]->width + j;
314 saliencyImage->pixels[(i / scaleFactor * width) + (j / scaleFactor)];
316 result[1]->pixels[3 * idx + 0] = 255 * saliency;
317 result[1]->pixels[3 * idx + 1] = 255 * saliency;
318 result[1]->pixels[3 * idx + 2] = 255 * saliency;
320 result[2]->pixels[3 * idx + 0] =
321 (0.2 + 0.8 * saliency) * result[0]->pixels[3 * idx + 0];
322 result[2]->pixels[3 * idx + 1] =
323 (0.2 + 0.8 * saliency) * result[0]->pixels[3 * idx + 1];
324 result[2]->pixels[3 * idx + 2] =
325 (0.2 + 0.8 * saliency) * result[0]->pixels[3 * idx + 2];
390 for (
int i = 0; i < centers.rows; i++)
393 ((int)centers.at<
float>(i, 1) * width) + ((
int)centers.at<
float>(i, 0));
394 int idx = (int)centers.at<
float>(i, 1) * scaleFactor * images[0]->width +
395 (int)centers.at<
float>(i, 0) * scaleFactor;
397 float saliency = saliencyImage->pixels[downScaleIdx];
399 if (idx >= (
int)currentPointCloud->points.size())
404 Eigen::Vector3f vec = currentPointCloud->points[idx].getVector3fMap();
406 if (!pcl::isFinite(currentPointCloud->points[idx]))
413 vec,
"DepthCamera", robotStateComponent->getSynchronizedRobot()->getName());
414 currentViewTarget->changeFrame(robot, headFrameName);
417 int closestNodeIndex = graphLookupTable->getClosestNode(positionInSphereCoordinates);
419 float halfCameraOpeningAngle = 12.0 *
M_PI / 180.0;
420 float modifiedHalfCameraOpeningAngle = halfCameraOpeningAngle;
421 float distance = currentViewTarget->toEigen().norm();
430 const float distanceThreshold = 1500;
433 modifiedHalfCameraOpeningAngle = (
distance - 0.1f * distanceThreshold) /
434 (0.9f * distanceThreshold) *
435 halfCameraOpeningAngle;
436 modifiedHalfCameraOpeningAngle =
std::max(0.0f, modifiedHalfCameraOpeningAngle);
440 std::vector<bool> visitedNodes(saliencyEgosphereGraph->getNodes()->size(),
false);
441 addSaliencyRecursive(closestNodeIndex,
444 positionInSphereCoordinates,
445 modifiedHalfCameraOpeningAngle);
451 for (std::size_t row = 0; centers.rows > 0 && row < static_cast<std::size_t>(centers.rows);
454 for (std::size_t i = 0; i < 8; i++)
456 for (std::size_t j = 0; j < 8; j++)
459 3 * (((int)centers.at<
float>(row, 1) * scaleFactor + i) * images[0]->width +
460 ((
int)centers.at<
float>(row, 0) * scaleFactor + j));
461 result[2]->pixels[
index] = 255;
462 result[2]->pixels[
index + 1] = 255 * (row == maxCluster);
463 result[2]->pixels[
index + 2] =
464 255 * (row ==
static_cast<std::size_t
>(secondCluster));
474 provideResultImages(result);
476 SaliencyMapBasePtr primitiveSaliency =
new SaliencyMapBase();
477 primitiveSaliency->name =
"ValveAttention";
478 saliencyEgosphereGraph->graphToVec(primitiveSaliency->map);
479 viewSelection->updateSaliencyMap(primitiveSaliency);
485 ValveAttention::addSaliencyRecursive(
const int currentNodeIndex,
486 std::vector<bool>& visitedNodes,
487 const float saliency,
489 const float maxDistanceOnArc)
494 float normalizedDistance =
497 saliencyEgosphereGraph->
getNodes()->at(currentNodeIndex)->getPosition()) /
503 (1.0f - 0.5f * normalizedDistance * normalizedDistance) * saliency;
507 ARMARX_INFO <<
"saliency is greater than 1.0: " << newValue;
508 newValue =
std::min(1.0f, newValue);
512 ->setIntensity(newValue);
515 visitedNodes.at(currentNodeIndex) =
true;
520 for (
size_t i = 0; i < saliencyEgosphereGraph->
getNodeAdjacency(currentNodeIndex)->size();
523 neighbourIndex = saliencyEgosphereGraph->
getNodeAdjacency(currentNodeIndex)->at(i);
525 if (!visitedNodes.at(neighbourIndex))
529 saliencyEgosphereGraph->
getNodes()->at(neighbourIndex)->getPosition()) <=
532 addSaliencyRecursive(neighbourIndex,
540 visitedNodes.at(neighbourIndex) =
true;