HumanTracker.cpp
Go to the documentation of this file.
1 #include "HumanTracker.h"
2 
3 #include <algorithm>
4 #include <cmath>
5 #include <map>
6 #include <string>
7 #include <vector>
8 
9 #include <boost/geometry.hpp> // IWYU pragma: keep
10 #include <boost/geometry/algorithms/assign.hpp>
11 #include <boost/geometry/algorithms/centroid.hpp>
12 #include <boost/geometry/geometries/point_xy.hpp>
13 #include <boost/geometry/geometries/polygon.hpp>
14 
17 
22 
24 
25 #include <range/v3/range/conversion.hpp>
26 #include <range/v3/view/transform.hpp>
27 
29 {
30 
31  void
33  {
34  prepareTrackedHumans(measurements.detectionTime);
35 
36  // calculate the poses according to the new received measurements
37  std::vector<DetectedHuman> newPoses =
38  measurements.humanPoses |
40  [measurements, this](const armem::human::HumanPose& humanPose) -> DetectedHuman
41  {
42  return convertHumanPoseToDetectedHuman(measurements.detectionTime, humanPose);
43  }) |
44  ranges::to_vector;
45 
46  // associate the new poses from the measurement with the tracked humans
47  associateHumans(newPoses);
48 
49  // add all not associated poses as new tracked humans
50  for (const auto& detectedHuman : newPoses)
51  {
52  if (not detectedHuman.associated)
53  {
54  //add new tracked human to list of tracked humans
55  trackedHumans.push_back(
56  TrackedHuman{.humanFilter = HumanFilter{detectedHuman.pose,
57  detectedHuman.detectionTime,
58  parameters.useKalmanFilter},
59  .trackingId = detectedHuman.trackingId,
60  .associatedCluster = nullptr,
61  .associated = true,
62  .confidence = parameters.confidenceCamera});
63  }
64  }
65  }
66 
67  std::vector<Cluster>
69  {
70 
71  prepareTrackedHumans(measurements.detectionTime);
72 
73  // only look at the clusters that have a size reasonable enough to contain at most two
74  // footprints
75  std::vector<AdvancedCluster> potentialFootprints;
76  std::vector<Cluster> unusedClusters;
77  for (const auto& cluster : measurements.clusters)
78  {
79  if (getClusterSize(cluster) <= 2 * parameters.maxFootprintSize)
80  {
81  potentialFootprints.push_back(AdvancedCluster{
82  .center = getClusterCenter(cluster), .cluster = cluster, .associated = false});
83  }
84  else
85  {
86  unusedClusters.push_back(cluster);
87  }
88  }
89 
90  // associate humans and clusters by their distances
91  const auto sortedDistances = getSortedDistances(trackedHumans, potentialFootprints);
92 
93  for (auto& posDistance : sortedDistances)
94  {
95  if (posDistance.distance > parameters.maxAssociationDistance)
96  {
97  break;
98  }
99  if (posDistance.oldHuman->associated || posDistance.newCluster->associated)
100  {
101  continue;
102  }
103  // no footprint was found before, so associate first footprint
104  if (!posDistance.oldHuman->associatedCluster)
105  {
106  posDistance.oldHuman->associatedCluster = posDistance.newCluster;
107  posDistance.newCluster->associated = true;
108  }
109  // found both footprints, so associate both footprints and update human with new pose
110  else
111  {
112  //calculate center between both footprints
113  auto& footprint1 = posDistance.oldHuman->associatedCluster->cluster;
114  auto& footprint2 = posDistance.newCluster->cluster;
115 
116  //create pose with orientation from old human
118  pose.translation() =
119  (getClusterCenter(footprint1) + getClusterCenter(footprint2)) / 2;
120  pose.linear() = posDistance.oldHuman->humanFilter.get().pose.linear();
121 
122 
123  posDistance.oldHuman->humanFilter.update(pose, measurements.detectionTime);
124 
125  posDistance.oldHuman->associatedCluster = nullptr;
126  posDistance.oldHuman->associated = true;
127  posDistance.newCluster->associated = true;
128  posDistance.oldHuman->confidence += parameters.confidenceLaser;
129  }
130  }
131 
132  //associate humans where only one footprint was found
133  for (auto& human : trackedHumans)
134  {
135  if (human.associated)
136  {
137  continue;
138  }
139 
140  if (human.associatedCluster)
141  {
142  auto& footprint = human.associatedCluster;
143  //create pose with orientation from old human
145  pose.translation() = footprint->center;
146  pose.linear() = human.humanFilter.get().pose.linear();
147 
148  human.humanFilter.update(pose, measurements.detectionTime);
149 
150  human.associatedCluster = nullptr;
151  human.associated = true;
152  human.confidence += parameters.confidenceLaser;
153  }
154  }
155 
156  // add unused clusters to return list
157  for (auto& cluster : potentialFootprints)
158  {
159  if (!cluster.associated)
160  {
161  unusedClusters.push_back(cluster.cluster);
162  }
163  }
164  return unusedClusters;
165  }
166 
167  std::vector<human::Human>
169  {
170  return trackedHumans |
172  { return h.humanFilter.get(); }) |
173  ranges::to_vector;
174  }
175 
176  void
178  {
179  trackedHumans.clear();
180  }
181 
183  HumanTracker::convertHumanPoseToDetectedHuman(const DateTime& time,
184  const armem::human::HumanPose& humanPose)
185  {
186  const std::map<std::string, armem::human::PoseKeypoint>& keypoints = humanPose.keypoints;
187  ARMARX_CHECK_NOT_EMPTY(keypoints);
188 
189  // calculate the arithmetic mean of all keypoint positions
190  Eigen::Vector3f centerPos = Eigen::Vector3f::Zero();
191  int size = 0;
192  for (const auto& [_, v] : keypoints)
193  {
194  if (v.positionGlobal.has_value())
195  {
196  centerPos += v.positionGlobal.value().toEigen();
197  size++;
198  }
199  }
200  centerPos /= size;
201 
202  // calculate the yaw of the specified keypoint representing the orientation if it exists
203  double yaw = 0;
204  auto head = humanPose.keypoints.find(parameters.rotationKeypoint);
205  if (head != humanPose.keypoints.end())
206  {
207  const armem::human::PoseKeypoint& refKeypoint = head->second;
208  ARMARX_CHECK(refKeypoint.orientationGlobal.has_value());
209  Eigen::Quaternionf qhead = refKeypoint.orientationGlobal->toEigenQuaternion();
210  Eigen::Vector3f vec(1, 0, 0);
211  Eigen::Vector3f rot3 = qhead._transformVector(vec);
212  Eigen::Vector2f rot2(rot3.x(), rot3.y());
213  if (rot2.norm() != 0)
214  {
215  // calculate angle of rot2
216  yaw = atan2(rot2.y(), rot2.x());
217  }
218  }
219 
220  // create the new pose with the calculated position and yaw
222  pose.translation() = conv::to2D(centerPos);
223  pose.linear() = Eigen::Rotation2Df(yaw).toRotationMatrix();
224 
225  return {pose, humanPose.humanTrackingId, time, false};
226  }
227 
228  std::vector<HumanTracker::PosHumanDistance>
229  HumanTracker::getSortedDistances(std::vector<HumanTracker::TrackedHuman>& oldHumans,
230  std::vector<HumanTracker::DetectedHuman>& newHumans)
231  {
232  std::vector<PosHumanDistance> posDistances;
233 
234  for (auto& oldHuman : oldHumans)
235  {
236  if (oldHuman.associated)
237  {
238  continue;
239  }
240  for (auto& newHuman : newHumans)
241  {
242  if (newHuman.associated)
243  {
244  continue;
245  }
246  // calculate distance between every possible combination of tracked and detected
247  // humans where none of them was associated
248  posDistances.push_back(
249  {&oldHuman,
250  &newHuman,
251  (newHuman.pose.translation() - oldHuman.humanFilter.get().pose.translation())
252  .norm()});
253  }
254  }
255 
256  // sort the distances ascending by their numeric value
257  std::sort(posDistances.begin(),
258  posDistances.end(),
259  [](const PosHumanDistance& a, const PosHumanDistance& b) -> bool
260  { return a.distance < b.distance; });
261 
262  return posDistances;
263  }
264 
265  std::vector<HumanTracker::PosLaserDistance>
266  HumanTracker::getSortedDistances(std::vector<TrackedHuman>& oldHumans,
267  std::vector<AdvancedCluster>& newClusters)
268  {
269  std::vector<PosLaserDistance> posDistances;
270 
271  for (auto& oldHuman : oldHumans)
272  {
273  for (auto& newCluster : newClusters)
274  {
275  // calculate distance between every possible combination of tracked human and cluster
276  posDistances.push_back(
277  {&oldHuman,
278  &newCluster,
279  (newCluster.center - oldHuman.humanFilter.get().pose.translation()).norm()});
280  }
281  }
282 
283  // sort the distances ascending by their numeric value
284  std::sort(posDistances.begin(),
285  posDistances.end(),
286  [](const PosLaserDistance& a, const PosLaserDistance& b) -> bool
287  { return a.distance < b.distance; });
288 
289  return posDistances;
290  }
291 
292  void
293  HumanTracker::associateHumans(std::vector<DetectedHuman>& detectedHumans)
294  {
295  // first, associate humans by their tracking id
296  for (auto& oldHuman : trackedHumans)
297  {
298  if (oldHuman.associated || not oldHuman.trackingId)
299  {
300  continue;
301  }
302  for (auto& newHuman : detectedHumans)
303  {
304  if (newHuman.associated || not newHuman.trackingId)
305  {
306  continue;
307  }
308  // check for every possible combination of old and new humans (that were not already
309  // associated and have a tracking id) if their tracking id is the same
310  if (oldHuman.trackingId.value() == newHuman.trackingId.value())
311  {
312  associate(&oldHuman, &newHuman);
313  }
314  }
315  }
316 
317  // second, associate leftover humans by their distances
318  const auto sortedDistances = getSortedDistances(trackedHumans, detectedHumans);
319 
320  for (auto& posDistance : sortedDistances)
321  {
322  if (posDistance.distance > parameters.maxAssociationDistance)
323  {
324  break;
325  }
326  if (posDistance.oldHuman->associated || posDistance.newHuman->associated)
327  {
328  continue;
329  }
330  // associate the pair with the currently smallest distance between non-associated humans
331  associate(posDistance.oldHuman, posDistance.newHuman);
332  }
333  }
334 
335  void
336  HumanTracker::associate(TrackedHuman* trackedHuman, DetectedHuman* detectedHuman)
337  {
338  ARMARX_CHECK(not trackedHuman->associated);
339  ARMARX_CHECK(not detectedHuman->associated);
340 
341 
342  trackedHuman->associated = true;
343  detectedHuman->associated = true;
344 
345  trackedHuman->humanFilter.update(detectedHuman->pose, detectedHuman->detectionTime);
346  trackedHuman->trackingId = detectedHuman->trackingId;
347 
348  trackedHuman->confidence = parameters.confidenceCamera;
349  }
350 
351  float
352  HumanTracker::getClusterSize(Cluster cluster)
353  {
354  return 2 * cluster.circle.radius;
355  }
356 
357  Eigen::Vector2f
358  HumanTracker::getClusterCenter(Cluster cluster)
359  {
360  typedef boost::geometry::model::d2::point_xy<double> boost_point;
361  typedef boost::geometry::model::polygon<boost_point> boost_polygon;
362 
363  ARMARX_CHECK(!cluster.convexHull.empty());
364  std::vector<boost_point> points;
365  for (auto& point : cluster.convexHull)
366  {
367  points.push_back(boost_point(point.x(), point.y()));
368  }
369  //make polygon enclosed
370  points.push_back(
371  boost_point(cluster.convexHull.front().x(), cluster.convexHull.front().y()));
372  boost_polygon poly;
373  boost::geometry::assign_points(poly, points);
374 
375  boost_point p = {};
376  boost::geometry::centroid(poly, p);
377 
378  return Eigen::Vector2f{p.x(), p.y()};
379  }
380 
381  void
382  HumanTracker::prepareTrackedHumans(DateTime time)
383  {
384  // iterate over all existing tracked humans
385  for (auto it = trackedHumans.begin(); it != trackedHumans.end();)
386  {
387  auto& human = *it;
388  // when the tracked human recieved no new measurement for too long or
389  // wasn't detected by the camera for too long, remove it
390  if (human.humanFilter.detectionAge(time) >= parameters.maxTrackingAge ||
391  human.confidence <= 0)
392  {
393  it = trackedHumans.erase(it);
394  }
395  // otherwise the tracked human is prepared for association at the current point in time
396  else
397  {
398  human.associatedCluster = nullptr;
399  human.associated = false;
400  human.humanFilter.propagation(time);
401  it++;
402  }
403  }
404  }
405 
406 } // namespace armarx::navigation::human
armarx::navigation::human::HumanTracker::getTrackedHumans
std::vector< human::Human > getTrackedHumans() const
HumanTracker::getTrackedHumans Returns all humans that are currently tracked.
Definition: HumanTracker.cpp:168
HumanFilter.h
armarx::navigation::human::Human
Definition: types.h:36
basic_types.h
armarx::navigation::human::HumanTracker::DetectedHuman
Definition: HumanTracker.h:66
armarx::navigation::human::HumanTracker::Parameters::maxAssociationDistance
float maxAssociationDistance
Definition: HumanTracker.h:113
DateTime.h
armarx::armem::human::PoseKeypoint::orientationGlobal
std::optional< armarx::FramedOrientation > orientationGlobal
Definition: types.h:27
armarx::navigation::human::HumanTracker::Parameters::confidenceCamera
int confidenceCamera
Definition: HumanTracker.h:120
armarx::navigation::human::HumanTracker::LaserMeasurement::detectionTime
DateTime detectionTime
Definition: HumanTracker.h:62
armarx::navigation::human::HumanTracker::TrackedHuman::humanFilter
HumanFilter humanFilter
Definition: HumanTracker.h:83
types.h
armarx::navigation::human
This file is part of ArmarX.
Definition: aron_conversions.cpp:10
ARMARX_CHECK_NOT_EMPTY
#define ARMARX_CHECK_NOT_EMPTY(c)
Definition: ExpressionException.h:224
HumanTracker.h
armarx::navigation::human::HumanTracker::reset
void reset()
HumanTracker::reset Resets this instance to the same state as if it just would have been created.
Definition: HumanTracker.cpp:177
armarx::navigation::human::HumanTracker::CameraMeasurement::detectionTime
DateTime detectionTime
Definition: HumanTracker.h:56
ARMARX_CHECK
#define ARMARX_CHECK(expression)
Shortcut for ARMARX_CHECK_EXPRESSION.
Definition: ExpressionException.h:82
armarx::navigation::human::HumanTracker::AdvancedCluster::center
Eigen::Vector2f center
Definition: HumanTracker.h:76
armarx::navigation::core::Pose2D
Eigen::Isometry2f Pose2D
Definition: basic_types.h:34
armarx::navigation::human::HumanTracker::TrackedHuman
Definition: HumanTracker.h:81
armarx::navigation::human::HumanTracker::Parameters::maxFootprintSize
float maxFootprintSize
Definition: HumanTracker.h:115
GfxTL::Identity
void Identity(MatrixXX< N, N, T > *a)
Definition: MatrixXX.h:570
armarx::ctrlutil::a
double a(double t, double a0, double j)
Definition: CtrlUtil.h:45
armarx::armem::human::PoseKeypoint
Definition: types.h:17
types.h
armarx::navigation::human::HumanTracker::CameraMeasurement
Definition: HumanTracker.h:54
Eigen::Quaternionf
Quaternion< float, 0 > Quaternionf
Definition: EigenForwardDeclarations.h:61
armarx::armem::human::HumanPose
Definition: types.h:30
armarx::armem::human::HumanPose::humanTrackingId
std::optional< std::string > humanTrackingId
Definition: types.h:36
armarx::navigation::human::HumanFilter::get
const Human & get() const
HumanFilter::get returns the human whose pose is filtered containing the most recent state.
Definition: HumanFilter.cpp:145
armarx::transform
auto transform(const Container< InputT, Alloc > &in, OutputT(*func)(InputT const &)) -> Container< OutputT, typename std::allocator_traits< Alloc >::template rebind_alloc< OutputT >>
Convenience function (with less typing) to transform a container of type InputT into the same contain...
Definition: algorithm.h:351
armarx::navigation::human::HumanTracker::Parameters::confidenceLaser
int confidenceLaser
Definition: HumanTracker.h:121
armarx::navigation::conv::to2D
std::vector< Eigen::Vector2f > to2D(const std::vector< Eigen::Vector3f > &v)
Definition: eigen.cpp:29
ExpressionException.h
armarx::core::time::DateTime
Represents a point in time.
Definition: DateTime.h:24
armarx::navigation::human::HumanFilter
The HumanFilter class can be used to track and filter the state of a single human.
Definition: HumanFilter.h:46
armarx::ctrlutil::v
double v(double t, double v0, double a0, double j)
Definition: CtrlUtil.h:39
armarx::navigation::human::HumanTracker::LaserMeasurement::clusters
std::vector< Cluster > clusters
Definition: HumanTracker.h:63
armarx::navigation::human::HumanTracker::Parameters::useKalmanFilter
bool useKalmanFilter
Definition: HumanTracker.h:124
armarx::navigation::human::HumanTracker::Parameters::rotationKeypoint
const std::string rotationKeypoint
Definition: HumanTracker.h:107
armarx::navigation::human::HumanTracker::CameraMeasurement::humanPoses
std::vector< armem::human::HumanPose > humanPoses
Definition: HumanTracker.h:57
armarx::navigation::human::HumanTracker::AdvancedCluster
Definition: HumanTracker.h:74
armarx::navigation::human::HumanTracker::Parameters::maxTrackingAge
Duration maxTrackingAge
Definition: HumanTracker.h:110
armarx::armem::human::HumanPose::keypoints
KeyPointMap keypoints
Definition: types.h:35
eigen.h
armarx::navigation::human::HumanTracker::LaserMeasurement
Definition: HumanTracker.h:60
armarx::navigation::human::Cluster
memory::LaserScannerFeature Cluster
Definition: HumanTracker.h:41
armarx::navigation::human::HumanTracker::update
void update(const CameraMeasurement &measurements)
HumanTracker::update Updates the tracked humans with the human measurements from a camera.
Definition: HumanTracker.cpp:32